Analisis Dampak Investasi Cryptocurrency dan Volatilitas Pasar terhadap Profitabilitas Perusahaan Energi di Indonesia

Main Article Content

Loso Judijanto
Eva Yuniarti Utami
Erwina Kartika Devi
Sarmiati Sarmiati
Eko Sudarmanto

Abstract

This research investigates the impact of Cryptocurrency investments and market volatility on the profitability of energy companies in Indonesia through quantitative analysis. The study involved a sample of 200 participants, including Cryptocurrency investors and executives of energy companies. Analysis of measurement models establishes construct validity and reliability (Cryptocurrency Investment, Market Volatility, and Profitability), and analysis of structural models reveals significant relationships between these variables. Surprisingly, the results showed that increased Cryptocurrency investments and higher market volatility were associated with increased profitability of energy companies. The model fit index confirms the robustness of the proposed model. The findings have implications for investors, policymakers, and industry stakeholders, who emphasize the need for informed decision-making in navigating the ever-evolving landscape of cryptocurrencies and traditional industries.

Article Details

How to Cite
Judijanto, L., Utami, E. Y., Devi, E. K., Sarmiati, S., & Sudarmanto, E. (2024). Analisis Dampak Investasi Cryptocurrency dan Volatilitas Pasar terhadap Profitabilitas Perusahaan Energi di Indonesia. Sanskara Akuntansi Dan Keuangan, 2(02), 90–99. https://doi.org/10.58812/sak.v2i02.330
Section
Articles

References

Advanced Technology Program. (2003). Technolog y Adoption Indicators Applied to the ATP Flow-Control Machining Project. NISTIR 6888.

Ahmadi, H. (2023). Is Cryptocurrency Risky as An Investment Instrument? Analysis of Return and Risk with A Comparison of Sharia Stocks. International Journal of Islamic Business Ethics, 8(1), 40. https://doi.org/10.30659/ijibe.8.1.40-53

Almeida, J., & Gonçalves, T. C. (2023). A Decade of Cryptocurrency Investment Literature: A Cluster-Based Systematic Analysis. In International Journal of Financial Studies (Vol. 11, Issue 2). https://doi.org/10.3390/ijfs11020071

Anisa, D., Anggraini, T., & Tambunan, K. (2023). Analisis Cryptocurrency Sebagai Alat Alternatif Berinvestasi Di Indonesia. Owner, 7(3), 2674–2682. https://doi.org/10.33395/owner.v7i3.1698

Annamalaisamy, B., & Vepur Jayaraman, S. (2023). Do cryptocurrencies integrate with the indices of equity, sustainability, clean energy, and crude oil? A wavelet coherency approach. International Journal of Finance & Economics, n/a(n/a). https://doi.org/https://doi.org/10.1002/ijfe.2843

Bollen, K. A., Fisher, Z. F., Giordano, M. L., Lilly, A. G., Luo, L., & Ye, A. (2022). An introduction to model implied instrumental variables using two stage least squares (MIIV-2SLS) in structural equation models (SEMs). Psychological Methods, 27(5), 752.

Carrasco, J. L. (2010). Structural Equation Model. Encyclopedia of Biopharmaceutical Statistics, 8(3), 1300–1305. https://doi.org/10.3109/9781439822463.209

Chun, D., Cho, H., & Ryu, D. (2020). Economic indicators and stock market volatility in an emerging economy. Economic Systems, 44(2), 100788. https://doi.org/https://doi.org/10.1016/j.ecosys.2020.100788

Daniali, S. M., Barykin, S. E., Kapustina, I. V, Mohammadbeigi Khortabi, F., Sergeev, S. M., Kalinina, O. V, Mikhaylov, A., Veynberg, R., Zasova, L., & Senjyu, T. (2021). Predicting Volatility Index According to Technical Index and Economic Indicators on the Basis of Deep Learning Algorithm. In Sustainability (Vol. 13, Issue 24). https://doi.org/10.3390/su132414011

Delcroix, F. (2016). How to monitor the front end of innovation in the new product development: defining performance indicators.

Denura, S. C., & Soekarno, S. (2023). A Study on Behavioural Bias & Investment Decision from Perspective of Indonesia’s Cryptocurrency Investors. International Journal of Current Science Research and Review, 06(01), 535–548. https://doi.org/10.47191/ijcsrr/v6-i1-58

Donoiu, P. C., & Iacob, D. (2023). The Cryptocurrency Market and the Financial Stability. Proceedings of the International Conference on Business Excellence, 17(1), 1769–1778. https://doi.org/10.2478/picbe-2023-0157

GEHLOT, P. (2023). Cryptocurrency And Technology: Could It Revolutionize The Economic Prosperity? Russian Law Journal, 11. https://doi.org/10.52783/rlj.v11i2s.571

Hair, J., & Alamer, A. (2022). Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Research Methods in Applied Linguistics, 1(3), 100027.

Handayani, D., Ikhsan, R. B., & Prabowo, H. (2023). Behavioral Intention to Invest Cryptocurrency in Indonesia: An Empirical Study. 2023 8th International Conference on Business and Industrial Research (ICBIR), 84–89. https://doi.org/10.1109/ICBIR57571.2023.10147507

Hossaion, S., Bairagi, M., Aktar, J., Honey, U., & Mithy, S. A. (2023). The Evolution of Bitcoin: A Historical Analysis and Future Prospects. IRASD Journal of Economics, 5(2 SE-Articles), 241–252. https://doi.org/10.52131/joe.2023.0502.0124

Iqbal, F., Zahid, M., & Koutmos, D. (2023). Cryptocurrency Trading and Downside Risk. In Risks (Vol. 11, Issue 7). https://doi.org/10.3390/risks11070122

Joaqui-Barandica, O., & Manotas-Duque, D. (2023). How do Climate and Macroeconomic Factors Affect the Profitability of the Energy Sector? International Journal of Energy Economics and Policy, 13, 444–454. https://doi.org/10.32479/ijeep.14303

Juwita*, R., Ramadhani, D. M., & Maris, A. W. I. (2023). The Determinants of Cryptocurrency Returns. Jurnal Ilmu Keuangan Dan Perbankan (JIKA), 12(2), 235–246. https://doi.org/10.34010/jika.v12i2.9461

Kahraman, Y. (2023). Finance of the Digital Age: Cryptocurrencies. https://doi.org/10.58830/ozgur.pub105.c644

Kante, M., & Michel, B. (2023). Use of partial least squares structural equation modelling (PLS-SEM) in privacy and disclosure research on social network sites: A systematic review. Comput. Hum. Behav. Rep, 10, 100291.

Li, X., Liang, C., & Ma, F. (2022). Forecasting stock market volatility with a large number of predictors: New evidence from the MS-MIDAS-LASSO model. Annals of Operations Research. https://doi.org/10.1007/s10479-022-04716-1

Luchkin, A. G., Lukasheva, O. L., Novikova, N. E., Melnikov, V. A., Zyatkova, A. V., & Yarotskaya, E. V. (2020). Cryptocurrencies in the Global Financial System: Problems and Ways to Overcome them. 148(RuDEcK), 423–430. https://doi.org/10.2991/aebmr.k.200730.077

Makridou, G., Doumpos, M., & Lemonakis, C. (2023). Relationship between ESG and corporate financial performance in the energy sector: empirical evidence from European companies. International Journal of Energy Sector Management, ahead-of-print(ahead-of-print). https://doi.org/10.1108/IJESM-01-2023-0012

Miller, M., & Prondzinski, D. (2023). Cryptocurrency Digital Assets: Evidence of the Emergence of Cryptocurrency Securities Markets as an Investment Asset Class, 2018-2023. Journal of Accounting and Finance, 23(2 SE-Articles). https://doi.org/10.33423/jaf.v23i2.6090

Naeem, M. A., Gul, R., Farid, S., Karim, S., & Lucey, B. M. (2023). Assessing linkages between alternative energy markets and cryptocurrencies. Journal of Economic Behavior & Organization, 211, 513–529. https://doi.org/https://doi.org/10.1016/j.jebo.2023.04.035

Nam, N. H. (2023). Impact of cryptocurrencies on financial markets. Journal of Social Sciences and Humanities, 65, 3–15. https://doi.org/10.31276/VMOSTJOSSH.65(2).03-15

Nugrahanti, T. P. (2016). Risk assessment and earning management in banking of Indonesia: corporate governance mechanisms. Global Journal of Business and Social Science Review, 4(1), 1–9.

Nugrahanti, T. P., & Jahja, A. S. (2018). Audit judgment performance: The effect of performance incentives, obedience pressures and ethical perceptions. Journal of Environmental Accounting and Management, 6(3), 225–234.

Nugrahanti, T. P., & Pratiwi, A. S. (2023). The Remote Audit and Information Technology: The impact of Covid-19 Pandemics. JABE (Journal Of Accounting And Business Education), 8(1), 15–39.

Pataki, P., & Zörög, Z. (2023). Cryptocurrency Operating Principle, Market and Risks. Acta Carolus Robertus, 13, 62–75. https://doi.org/10.33032/acr.3988

Perayunda, I. G. A. D., & Mahyuni, L. P. (2022). Faktor-Faktor Yang Mempengaruhi Keputusan Investasi Cryptocurrency Pada Kaum Milenial. EKUITAS (Jurnal Ekonomi Dan Keuangan), 6(3), 351–372. https://doi.org/10.24034/j25485024.y2022.v6.i3.5224

Perdana, P. N., Armeliza, D., Khairunnisa, H., & Nasution, H. (2023). Research Data Processing Through Structural Equation Model-Partial Least Square (SEM-PLS) Method. Jurnal Pemberdayaan Masyarakat Madani (JPMM), 7(1), 44–50.

Personal, M., & Archive, R. (2017). Munich Personal RePEc Archive Sentiment indicators and macroeconomic data as drivers for low-frequency stock market volatility Sentiment indicators and macroeconomic data as drivers for. 80266.

Pranata, R. M. (2023). Keputusan Investasi Cryptocurrency di Purwakarta: Mengungkap Dampak dari Herding dan Overconfidence. Jurnal Manajemen & Bisnis Kreatif, 9(1), 62–72. https://doi.org/10.36805/manajemen.v9i1.5502

Rahyuda, H., & Candradewi, M. (2023). Determinants of cryptocurrency investment decisions (Study of students in Bali). Investment Management and Financial Innovations, 20, 193–204. https://doi.org/10.21511/imfi.20(2).2023.17

Raucci, D., & Tarquinio, L. (2015). A Study of the Economic and Non-Financial Performance Indicators in Corporate Sustainability Reports. Journal of Sustainable Development, 8. https://doi.org/10.5539/jsd.v8n6p216

Restuputri, D. P., Refoera, F. B., & Masudin, I. (2023). Investigating Acceptance of Digital Asset and Crypto Investment Applications Based on the Use of Technology Model (UTAUT2). In FinTech (Vol. 2, Issue 3, pp. 388–413). https://doi.org/10.3390/fintech2030022

Rhouas, S., Bouchekourte, M., & El hami, N. (2022). Optimization of the impact measurement of market structure on liquidity and volatility. International Journal for Simulation and Multidisciplinary Design Optimization, 13, 9. https://doi.org/10.1051/smdo/2021040

Rizki, F., & Suryokencono, P. (2023). Pertanggungjawaban Penyelenggara Investasi Bodong yang Memakai Skema Ponzi dengan Modus Investasi Cryptocurrency. Indonesian Journal of Law and Justice, 1, 10. https://doi.org/10.47134/ijlj.v1i2.2013

Shahzad, S. J. H., Ferrer, R., & Bouri, E. (2023). Systemic Risk in the Global Energy Sector: Structure, Determinants and Portfolio Management Implications. Energy Journal, 44(6), 211–242. https://doi.org/10.5547/01956574.44.6.ssha

Shaturaev, J. (2023). Impact of Cryptocurrency Market on the Performance of Stock Market An Empirical Study. Munich Personal RePEc Archive, 118244.

Siwy, F. I. D., Dharmawan, M. S., & Mayatopani, H. (2023). Penggunaan Metode AHP dalam Menentukan Cryptocurrency untuk Investasi. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 5(2 SE-Articles). https://doi.org/10.35746/jtim.v5i2.321