Pemetaan Bibliometrik Penelitian Global tentang Corpus Linguistics

Main Article Content

Loso Judijanto

Abstract

Penelitian ini bertujuan memetakan lanskap penelitian global di bidang corpus linguistics dengan menggunakan pendekatan bibliometrik berbasis data dari basis data Scopus. Analisis dilakukan terhadap publikasi periode 2000–2025 dengan fokus pada tren publikasi, kolaborasi internasional, kata kunci dominan, dan keterkaitan tematik. Data dianalisis menggunakan perangkat lunak VOSviewer dan Bibliometrix untuk menghasilkan visualisasi jejaring co-authorship, co-occurrence, dan co-citation. Hasil penelitian menunjukkan bahwa corpus linguistics berada pada pusat interaksi antara linguistik tradisional dan teknologi komputasional, dengan keterkaitan kuat terhadap natural language processing systems, semantics, deep learning, dan large language models. Selain itu, topik seperti low resource languages, contrastive learning, dan speech recognition muncul sebagai bidang yang tengah berkembang dan berpotensi menjadi fokus utama riset di masa depan. Temuan ini memberikan implikasi praktis bagi peneliti, industri teknologi bahasa, dan pembuat kebijakan, serta kontribusi teoritis dalam memperluas pemahaman corpus linguistics sebagai bidang interdisipliner yang dinamis.

Article Details

How to Cite
Judijanto, L. (2025). Pemetaan Bibliometrik Penelitian Global tentang Corpus Linguistics. Sanskara Ilmu Sosial Dan Humaniora, 2(03), 177–185. https://doi.org/10.58812/sish.v2i03.604
Section
Articles

References

Chai, C. P. (2023). Comparison of text preprocessing methods. Natural Language Engineering, 29(3), 509–553.

Chen, J., Lin, H., Han, X., & Sun, L. (2024). Benchmarking large language models in retrieval-augmented generation. Proceedings of the AAAI Conference on Artificial Intelligence, 38(16), 17754–17762.

Deng, Y., Xia, C. S., Peng, H., Yang, C., & Zhang, L. (2023). Large language models are zero-shot fuzzers: Fuzzing deep-learning libraries via large language models. Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, 423–435.

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296.

Gries, S. T. (2009). What is corpus linguistics? Language and Linguistics Compass, 3(5), 1225–1241.

Javaid, M., Haleema, A., & Singh, R. P. (2023). ChatGPT for healthcare services: An emerging stage for an innovative perspective. BenchCouncil Transactions on Benchmarks, Standards & Evaluations, 3(1).

Kennedy, G. (2014). An introduction to corpus linguistics. Routledge.

Kresevic, S., Giuffrè, M., Ajcevic, M., Accardo, A., Crocè, L. S., & Shung, D. L. (2024). Optimization of hepatological clinical guidelines interpretation by large language models: a retrieval augmented generation-based framework. NPJ Digital Medicine, 7(1), 102.

Latif, E., & Zhai, X. (2024). Fine-tuning ChatGPT for automatic scoring. Computers and Education: Artificial Intelligence, 6, 100210.

Leech, G. (2014). The state of the art in corpus linguistics. English Corpus Linguistics, 8–29.

McEnery, T. (2019). Corpus linguistics. Edinburgh University Press.

McEnery, T., & Hardie, A. (2011). Corpus linguistics: Method, theory and practice. Cambridge University Press.

Navigli, R., Conia, S., & Ross, B. (2023). Biases in large language models: origins, inventory, and discussion. ACM Journal of Data and Information Quality, 15(2), 1–21.

Ranathunga, S., Lee, E.-S. A., Prifti Skenduli, M., Shekhar, R., Alam, M., & Kaur, R. (2023). Neural machine translation for low-resource languages: A survey. ACM Computing Surveys, 55(11), 1–37.

Reppen, R., & Simpson-Vlach, R. (2019). Corpus linguistics. In An introduction to applied linguistics (pp. 91–108). Routledge.

Wagner, J., Triantafyllopoulos, A., Wierstorf, H., Schmitt, M., Burkhardt, F., Eyben, F., & Schuller, B. W. (2023). Dawn of the transformer era in speech emotion recognition: closing the valence gap. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9), 10745–10759.

Zhang, B., Yang, H., Zhou, T., Ali Babar, M., & Liu, X.-Y. (2023). Enhancing financial sentiment analysis via retrieval augmented large language models. Proceedings of the Fourth ACM International Conference on AI in Finance, 349–356.